Journal of Organometallic Chemistry, 356 (1988) 173-179 Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Bis(η^5 -cyclopentadienyl)bis(hexafluoroarsenato)titan(IV): Synthese, Charakterisierung und Struktur *

Thomas Klapötke *

Institut für Anorganische und Analytische Chemie, Technische Universität Berlin, Straße des 17. Juni 135, D-1000 Berlin 12 (B.R.D.)

und Ulf Thewalt *

Sektion für Röntgen- und Elektronenbeugung, Universität Ulm, Oberer Eselsberg, D-7900 Ulm (B.R.D.) (Eingegangen den 13. Mai 1988)

Abstract

The reaction of Cp_2TiCl_2 with AgAsF₆ or the reaction of Cp_2TiF_2 with AsF₅, in SO₂ as the solvent, gives $Cp_2Ti(AsF_6)_2$ in quantitative yields. The chemical characterization, the solvent equilibria, and the thermal decomposition behaviour are described on the basis of chemical analysis, ¹H NMR, IR, Raman, and mass spectral data. The structure of titanocene bis(hexafluoroarsenate) has been determined by an X-ray diffraction study.

Zusammenfassung

Sowohl die Umsetzung von Cp_2TiCl_2 mit AgAsF₆ als auch die Reaktion von Cp_2TiF_2 mit AsF₅, jeweils in SO₂, führen zur quantitativen Synthese von solvatfreiem $Cp_2Ti(AsF_6)_2$. Die chemische Charakterisierung und die Diskussion von Lösungsmittelgleichgewichten bzw. vom thermischen Zersetzungsverhalten erfolgten auf der Basis von Analysen, ¹H-NMR-, IR-, Raman- und massenspektroskopischen Daten. Die Struktur des Titanocenbis(hexafluoroarsenates) wurde mittels Röntgenbeugung am Einkristall bestimmt.

Einführung

Die Reaktion von Titanocendichlorid mit Lewis-Säuren wie $FeCl_3$, $SnCl_4$ und $SbCl_5$ in Anwesenheit von Neutralliganden führt zur Ausbildung von Komplexkat-

^{*} Metallocen-Chemie hochfluorierter Ligand-Systeme: 2. Mitteilung (1. Mitteilung [12]).

ionen, in denen das Ti^{IV}-Zentrum der Cp₂Ti^{IV}-Baugruppe sein Koordinationspolyeder durch über Sauerstoff (z.B. H₂O [1,2]) und Stickstoff [3–6] koordinierte Neutralliganden komplettiert. Allgemein besitzen Übergangsmetallhalogenide Lewis-Base-Eigenschaften, und es ist vermutet worden, daß die Metall-Halogen-Bindung auch in den gebildeten Komplexen erhalten bleibt [7]. Andererseits wurde bereits früher die Bildung von Cp₂TiF₂ bei Reaktionen von Cp₂TiCl₂ mit Fluor-enthaltenden Agentien wie CF₃S⁻, BF₄⁻, PF₆⁻, SbF₆⁻ und AsF₆⁻ beobachtet [8–10], wobei später Gleichgewichtsreaktionen in Lösung diskutiert wurden [11] (Gl. 1 und 2), jedoch gelang niemals die Isolierung und Charakterisierung eines Lewis-Säure-Adduktes gemäß Gleichung 1 oder 2. Kürzlich konnten wir mit der Synthese von Cp₂Ti(SbF₆)₂ den unseres Wissens nach ersten Neutralligand-freien Lewis-Säure-Komplex am Titanocen-System des Typs Cp₂Ti(XL)₂ (X = Halogen, L = Lewis-Säure) darstellen [12].

$$Cp_2 TiF_2 + L \rightleftharpoons Cp_2 TiF(LF)$$
(1)

$$Cp_2TiF(LF) + L \rightleftharpoons Cp_2Ti(LF)_2$$
 (2)

In der vorliegenden Arbeit beschreiben wir nun die Synthese von $Cp_2Ti(AsF_6)_2$ (A), einerseits durch Reaktion von Cp_2TiF_2 mit der starken Lewis-Säure und dem Fluorid-Ionen-Akzeptor AsF₅ (AsF₅ ist ein kräftigerer F⁻-Akzeptor als PF₅ [13]; ΔH (AsF₅, g + F⁻, g \rightarrow AsF₆⁻, g) = -464 kJ/mol, ΔH (PF₅, g + F⁻, g \rightarrow PF₆⁻, g) = -422 kJ/mol [14]), andererseits durch Salzeliminierung aus Cp_2TiCl_2 und AgAsF₆, sowie dessen chemische und strukturelle Charakterisierung.

Ergebnisse und Diskussion

Chemische und spektroskopische Aspekte

Die Umsetzung von Cp_2TiCl_2 mit AgAsF₆ im Molverhältnis 1/2 führt in quantitativer Reaktion in SO₂(l) unter AgCl-Abscheidung zur Substitution beider Chloro-Liganden am Titanocen-System und damit zur Darstellung von $Cp_2Ti(AsF_6)_2$ (A) (Gl. 3). Die gleiche Verbindung A konnte auch als einziges, ebenfalls quantitativ gebildetes, Produkt aus der Reaktion von Cp_2TiF_2 mit zwei Moläquivalenten AsF₅ spektroskopisch nachgewiesen werden (Gl. 4).

$$Cp_{2}TiCl_{2} + 2 AgAsF_{6} \xrightarrow{SO_{2}} Cp_{2}Ti(AsF_{6})_{2} + 2 AgCl$$
(3)
(3)
(4)

$$Cp_2TiF_2 + 2 AsF_5 \xrightarrow{SO_2} A$$
(4)

Denkbar wäre auch gewesen, daß sich A bei der Kristallisation zu Cp_2TiF_2 und AsF_5 zersetzt (vgl. [11]) oder aber in Form eines kationischen Komplexes mit SO₂ als Neutralligand anfällt.

Die größere Stabilität von A im Gegensatz zu $Cp_2Ti(PF_6)_2$ bezüglich der Zersetzung zu Cp_2TiF_2 und EF_5 (E = P, As) kann durch die höhere F⁻-Akzeptoreigenschaft von AsF₅ gegenüber PF₅ erklärt werden. Für die stärkere Fluorid-Affinität des AsF₅ im Vergleich zu PF₅ kann die höhere Kernladung am As verantwortlich gemacht werden, was ein allgemeiner Trend ist, so sind generell As^V-Verbindungen stärkere Oxidationsmittel als ihre P^V-Analoga. A kristallisiert bei langsamen Einengen (1–2 Tage) aus der SO₂-Reaktionslösung aus und kann in Form gut ausgebildeter, tief-rotvioletter Kristalle durch erneute Umkristallisation aus gesättigter SO₂-Lösung bei Raumtemperatur erhalten werden. An der Luft tritt innerhalb weniger Minuten Zersetzung ein. Die Identität von A wurde durch Analysen-, ¹H-NMR- und IR-Daten gesichert (s. Exp.).

Das IR-Spektrum von A zeigt sämtliche für das Cp_2Ti -System zu erwartenden Banden und darüberhinaus die IR-aktiven Absorptionsbanden des AsF₆⁻-Anions. Das beobachtete IR-Spektrum bezüglich der AsF₆⁻-Einheit ist in Übereinstimmung mit einer Symmetrieerniedrigung von O_h nach näherungsweise C_{4v} [15,16]. Eine zusätzlich auftretende Bande bei 530 cm⁻¹ kann der symmetrischen und asymmetrischen Ti-F-Streckschwingung der Ti-F-As-Einheit zugeordnet werden [17].

Im Raman-Laser (rot) zersetzt sich A bei Raumtemperatur spontan, zeigt aber bei T < -100 °C als sehr schwache Banden drei der AsF₆-Baugruppe zuzuordnende Absorptionen (ν_1 , ν_2 , ν_5) und zusätzlich die ν (C-H)-Schwingung bei 3098 cm⁻¹ von ebenfalls geringer Intensität (s. Exp.). Die geringe Qualität des Raman-Spektrums der kristallinen Probe ist sicher hauptsächlich auch auf bereits bei -100 °C eintretende Zersetzung zurückzuführen.

Im ¹H-NMR-Spektrum (SO₂) zeigt A nur ein scharfes Singulett im Cp-Bereich, etwa 0.7 ppm tieffeldverschoben relativ zu Cp_2TiCl_2 , während Cp_2TiF_2 auch in SO₂ das typische Triplett, bedingt durch Kopplung der Protonen mit den beiden äquivalenten F-Kernen, aufweist [8,18]. Sowohl die starke Tieffeldverschiebung wie auch die fehlende Signalaufspaltung durch Kopplung kann durch teilweise Dissoziation von A in Lösung in nur noch schwach gebundene Ionenpaare erklärt werden (Gl. 5) (vgl. [11]).

$$\mathbf{A} (s) \xrightarrow[-SO_2(l)]{+SO_2(l)} Cp_2 Ti^{2+} (AsF_6^{-})_2 \cdot \text{Solvens (sol.)}$$
(5)

Im Massenspektrum (EI) zeigt sich A als überraschend instabile Verbindung und weist weder bei Raumtemperatur noch bei höheren Temperaturen einen dem Molekülion zuzuordnenden Peak auf. Interessanterweise verläuft die thermische Zersetzung von A nicht, wie erwartet, in Umkehrung zu der Bildungsreaktion (Gl. 4), vielmehr tritt bei 60 °C als Signal mit höchstem m/z-Wert ein dem Ion CpTiF₃¹⁺ zuzuordnendes auf. Daß dieser Peak bei m/z = 170 zu nahezu 100% dem Ion CpTiF₃¹⁺ und nicht AsF₅¹⁺ entspricht, konnte durch Berechnung der Isotopenmuster eindeutig aufgezeigt werden. Einige der Fragmentierungen konnten durch die Verfolgung metastabiler Zerfälle mittels der linked-scan-Technik hinsichtlich der Ionen-Genese nachgewiesen werden (s. Exp.). Während das Fragment C₅H₅¹⁺ den Basis-Peak liefert, ist AsF₃¹⁺ ebenfalls mit hoher Intensität vertreten. Somit kann für die thermische Zersetzung von A unter den im Massenspektrometer vorliegenden Bedingungen eine weitergehende Fluorierung des Organometall-Fragments unter Abspaltung eines der Cp-Ringe formuliert werden (Gl. 6).

$$\mathbf{A} \to \mathbf{C}\mathbf{p}\mathbf{T}\mathbf{i}\mathbf{F}_3 + 2\,\mathbf{A}\mathbf{s}\mathbf{F}_3 + \dots \tag{6}$$

Dieses Ergebnis läßt besonders die Untersuchung des Reaktionsverhaltens von CpTiF₃ selbst mit starken Lewis-Säuren und F⁻-Akzeptoren interessant erscheinen, weitergehende Versuche werden dies aufzeigen. Das Hochtemperatur-Massenspektrum (300°C) zeigt ebenfalls vollständige Zersetzung und zusätzlich das Auftreten elementaren Arsens als As₄ mit einem Peak bei höchstem m/z-Wert.

Fig. 1. Projektion eines $Cp_2Ti(AsF_6)_2$ -Moleküls auf die Ti,As,As'-Ebene. Die kristallographische Spiegelebene verläuft durch C(4), Ti und C(1).

Strukturelle Aspekte

Figur 1 zeigt eine ORTEP-Darstellung des $Cp_2Ti(AsF_6)_2$ -Moleküls. Das Molekül besitzt kristallographische Spiegelsymmetrie. Die entsprechende Spiegelebene steht

Tabelle 1

Ausgewählte	Abstände (Å) und	Winkel (°)	für	Cn.Ti(AsE).	
Ausgewahlte	Abstande (A) una	WINKEL ()	101	$Cp_2 \prod Asr_6 j_2$	

Ti-F(1)	2.00(1)	F(1)-Ti-F(1)'	86.3(4)	
Ti-C(1)	2.36(1)	Z(1) - Ti - Z(2)	134.0	
Ti-C(2)	2.38(1)	Ti-F(1)-As	178.0(5)	
Ti-C(3)	2.33(1)	F(1)-As-F(2)	87.6(5)	
Ti-C(4)	2.35(1)	F(1) - As - F(3)	84.3(5)	
Ti-C(5)	2.33(1)	F(1)-As-F(4)	87.1(5)	
Ti-C(6)	2.37(1)	F(1) - As - F(5)	88.0(5)	
Ti-Z(1)	2.02	F(1) - As - F(6)	179.1(6)	
Ti-Z(2)	2.02	F(2) - As - F(3)	90.3(7)	
As-F(1)	1.80(1)	F(2) - As - F(4)	174.7(6)	
As-F(2)	1.64(1)	F(2) - As - F(5)	88.5(6)	
As-F(3)	1.65(1)	F(2) - As - F(6)	93.3(6)	
As-F(4)	1.64(1)	F(3)-As-F(4)	89.4(7)	
As-F(5)	1.66(1)	F(3) - As - F(5)	172.2(6)	
As-F(6)	1.66(1)	F(3) - As - F(6)	95.6(6)	
C(1)-C(2)	1.40(2)	F(4) - As - F(5)	91.1(7)	
C(2) - C(3)	1.41(2)	F(4) - As - F(6)	92.0(7)	
C(3)-C(3)'	1.46(3)	F(5) - As - F(6)	92.1(6)	
C(4)-C(5)	1.39(2)			
C(5)-C(6)	1.42(2)			
C(6)-C(6)'	1.39(3)			

^a Mit Z(1) und Z(2) sind die Zentren der C₅-Ringe bezeichnet, welche C(1) bzw. C(4) enthalten.

senkrecht auf dem As-As-Vektor. Bindungsabstände und -winkel sind in Tabelle 1 zusammengestellt. Die zugehörigen Fehler sind relativ hoch. Dies ist durch die an Fehlordnung grenzenden starken "thermischen Schwingungen" der F- und C-Atome bedingt. Chemisch äquivalente Abstände stimmen in Rahmen ihrer Genauigkeit miteinander überein. Wie zu erwarten, ist das Brücken-F-Atom deutlich weiter vom As-Atom entfernt als die übrigen F-Atome. In erster Näherung ist das As-Atom oktaedrisch von seinen Liganden umgeben. Es fällt allerdings auf, dass die äquatorialen F-Liganden (F(2) bis F(5)) deutlich in Richtung Ti verschoben sind (die entsprechenden F(6)-As-F-Winkel sind >90°). Das Ti-Zentrum weist die "übliche" Koordination auf, wobei der Z-Ti-Z-Winkel (134.0°) (Z = C₅-Ringzentrum) beträchtlich grösser als der F(1)-Ti-F(1')-Winkel (86.3°) ist. Zum Vergleich: Die entsprechenden Winkel in Cp₂TiCl₂ betragen 131.0 und 94.5° [19].

Experimentelles

Alle Umsetzungen und das Aufarbeiten erfolgten in SO_2 -Atmosphäre, die Handhabung des isolierten Produktes unter einer Inertgasatmosphäre (Ar oder N_2); sämtliche Lösungsmittel und Apparaturen waren getrocknet. Die Darstellung von Cp₂TiCl₂ erfolgte nach Literaturvorschrift [20], AgAsF₆ (Alfa) wurde käuflich erworben.

MS: Varian MAT 311 A (EI, 70 eV); ¹H-NMR: Varian XL 200; IR: Perkin–Elmer 735 B.

 $Cp_2Ti(AsF_6)_2$ (A) gemäß Gl. 3

Eine Lösung von 1.00 g AgAs F_6 (3.37 mmol) in 10 ml SO₂ wird bei Raumtemperatur unter Rühren mit einer Lösung von 0.42 g Cp₂TiCl₂ (1.69 mmol) in 15 ml SO₂ versetzt. Es tritt spontane Reaktion ein, wobei AgCl als weißer Niederschlag ausfällt, während A in Lösung bleibt und somit durch Filtration (D4-Fritte) vom Silberchlorid abgetrennt werden kann. Beim Einengen der rotvioletten Lösung fällt A als feinkristalliner Niederschlag an; Umkristallisation aus 10 ml SO₂ führt zu tief-rotviolettem, kristallinem Produkt.

Ausbeute 0.89 g (94.7%). Gef.: C, 20.9; H, 1.7. $C_{10}H_{10}As_2F_{12}Ti$ (555.9) ber.: C, 21.6; H, 1.8%.

IR (Fluorolube bzw. Nujol, Standard: Polystyrene, cm⁻¹): 3120s (ν (CH)); 1448sh, 1440s (ω (CC)); 1028sh, 1020m (δ (CH)); 850vs, 845sh (γ (CH)); 730vs, 715vs, 685s (ν (AsF)); 595vw; 530s,br (ν (TiF)); 452w; 395vs, 365s, 345m (δ (AsF)). Raman (Probe: kristallin; Anregung: 647.09 nm, 100 mW; $T < -100^{\circ}$ C; cm⁻¹): 3098w (ν (CH)); 690w (ν_1 (AsF₆); 576vw (ν_2 (AsF₆)); 374vw (ν_5 (AsF₆)). MS (60°C): m/z (I_r) 170 (32; CpTiF₃), 151* (13; CpTiF₃ – F), 132 (11; CpTiF), 132 (28; AsF₃), 113 (42; AsF₂), 105 (6; TiF₃), 94 (2; AsF), 86 (13; TiF₂), 84 (2; CpF), 67 (5; TiF), 65 (100; C₅H₅); (300°C) 300 (39; As₄), 207 (26; As₂F₃), 191 (8; Ti₂F₅), 169 (19; As₂F), 150 (17; As₂), 132 (12; AsF₃), 105 (100; TiF₃); * nachgewiesen durch metastabilen Zerfall (linked-scan-Technik). ¹H-NMR (SO₂, δ in ppm): 7.30 s; (Cp₂TiCl₂: 6.65 s).

$Cp_{2}Ti(AsF_{6})_{2}$ (A) gemäß Gl. 4

Eine Lösung von 0.07 g Cp_2TiF_2 (0.32 mmol) in 5 ml SO₂ wird in N₂(l) eingefroren und durch Kondensation mit 0.11 g AsF₅ (0.65 mmol) versetzt. Nach

Atom	x	у	z	U(eq)
Ti	0.0941(2)	0.25	0.5264(3)	0.033(1)
C(1)	-0.0864(11)	0.25	0.4715(23)	0.063(12)
C(2)	-0.0663(9)	0.3261(9)	0.5619(17)	0.063(8)
C(3)	-0.0283(9)	0.2983(8)	0.7103(17)	0.068(8)
C(4)	0.1924(13)	0.25	0.7619(21)	0.069(13)
C(5)	0.2187(10)	0.1748(9)	0.6759(19)	0.074(9)
C(6)	0.2702(9)	0.2042(10)	0.5357(17)	0.084(10)
As	0.1103(1)	0.0795(1)	0.1950(2)	0.054(1)
F (1)	0.1004(6)	0.1595(6)	0.3531(9)	0.092(6)
F (2)	0.0339(10)	0.1436(7)	0.0901(13)	0.148(9)
F(3)	0.2121(9)	0.1382(9)	0.1402(15)	0.172(11)
F(4)	0.1857(10)	0.0218(7)	0.3135(16)	0.168(10)
F(5)	0.0046(8)	0.0308(7)	0.2685(14)	0.142(9)
F(6)	0.1208(8)	0.0050(9)	0.0512(16)	0.181(11)

Tabelle 2

Atomparameter für $Cp_2Ti(AsF_6)_2$

Erwärmen auf Raumtemperatur wird die tief-rotviolette Reaktionslösung direkt in ein NMR-Rohr überführt und spektroskopisch vermessen. ¹H-NMR (SO₂, δ in ppm): 7.30 s.

Röntgenkristallographie

Die Röntgenmessungen erfolgten auf einem Philips-PW1100-Einkristalldiffraktometer (Mo- K_{α} -Strahlung, λ 0.71069 Å; Graphitmonochromator; Raumtemperatur). Der benutzte, in einem Lindemannglasröhrchen eingeschlossene Kristall hatte die Abmessungen 0.02, 0.02, 0.04 cm. Kristalldaten: orthorhombisch, Raumgruppe Pnma; Gitterkonstanten: a 12.842(3), b 15.133(4), c 8.414(2) Å; D(berechnet): 2.258 g cm⁻³ für Z = 4. Intensitätsdaten: $\theta/2\theta$ -Betrieb; Messbereich: $4^{\circ} \le 2\theta \le 46^{\circ}$. 1182 unabhängige Reflexe erfasst. Eine Lp-Korrektur und eine empirische Absorptionskorrektur wurden angebracht (μ 45.0 cm⁻¹). Die 1051 Reflexe mit $F_0 \ge 3\sigma(F_0)$ wurden zu den weiteren Rechnungen benutzt. Die Struktur wurde mittels der Patterson-Methode gelöst und mittels ΔF -Synthesen vervollständigt. Die H-Atome wurden bei den Rechnungen ausser acht gelassen. Die *R*-Indices nach der Verfeinerung mit anisotropen Temperaturfaktoren sind R 0.077 und $R_{\rm w}$ 0.079. Benutzte Formfaktorwerte und Rechenprogramme wie in [6]. Atomparameter s. Tabelle 2. Weitere Einzelheiten zur Strukturbestimmung können beim Fachinformationszentrum Energie-Physik-Mathematik, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-53100, angefordert werden.

Dank

Frau A. Stöckel sind wir für die Aufnahme der Massenspektren zu Dank verpflichtet; Herrn Professor R. Steudel und Frau R. Hillarius danken wir für ihre Bemühungen und die Aufnahme der Raman-Spektren und Herrn M. Shriver für die Aufnahme der Kernresonanzspektren.

Literatur

- 1 H.-P. Klein und U. Thewalt, Z. Anorg. Allg. Chem., 467 (1981) 62.
- 2 U. Thewalt und H.-P. Klein, J. Organomet. Chem., 194 (1980) 297.
- 3 U. Thewalt und K. Berhalter, J. Organomet. Chem., 302 (1986) 193.
- 4 M.G. Meirim und E.W. Neuse, Trans. Met. Chem., 9 (1984) 337.
- 5 U. Thewalt, K. Berhalter und E.W. Neuse, Trans. Met. Chem., 10 (1985) 393.
- 6 K. Berhalter und U. Thewalt, J. Organomet. Chem., 332 (1987) 123.
- 7 M. Pankowski, B. Demerseman, G. Bouquet und M. Bigorgne, J. Organomet. Chem., 35 (1972) 155. T.J. Marks, J. Kristoff, A. Alich und D.F. Shriver, J. Organomet. Chem., 33 (1971) C35.
- 8 R.B. King und N. Welcman, Inorg. Chem., 8 (1969) 2540.
- 9 G. Doyle und R.S. Tobias, Inorg. Chem., 6 (1967) 1111.
- 10 D.A. White, J. Inorg. Nucl. Chem., 33 (1971) 691.
- 11 H.C. Clark und A. Shaver, J. Coord. Chem., 4 (1975) 243.
- 12 Th. Klapötke, Polyhedron, zum Druck eingereicht.
- 13 F.A. Cotton und G. Wilkinson (Hrsg.), Anorg. Chemie, 4. Auflage, Verlag Chemie, Weinheim, 1982, S. 459.
- 14 T.E. Mallouk, G.L. Rosenthal, G. Müller, R. Brusasco und N. Bartlett, Inorg. Chem., 23 (1984) 3167.
- 15 K.O. Christe, C.J. Schack und E.C. Curtis, Inorg. Chem., 11 (1972) 583.
- 16 K. Seppelt, Z. Anorg. Allg. Chem., 399 (1973) 87.
- 16 P.M. Druce, B.M. Kingston, M.F. Lappert, R.C. Srivastava, M.J. Frazer und W.E. Newton, J. Chem. Soc., A, (1969) 2814.
- 18 A.N. Nesmeyanov, O.V. Nogina, E.I. Fedin, V.A. Dubovitskii, B.A. Kvasov und P.V. Petrovskii, Dokl. Akad. Nauk. S.S.S.R., 205 (1972) 857.
- 19 A. Clearfield, D.K. Warner, C.H. Saldarriaga-Molina, R. Ropal und I. Bernal, Can. J. Chem., 53 (1975) 1622.
- 20 G. Wilkinson und J.M. Birmingham, J. Am. Chem. Soc., 76 (1954) 4281.